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The rotor assisted population transfer (RAPT) sequence is used
to enhance the sensitivity of the RIACT(II) experiment for spin-3/2
quadrupolar nuclei. A detailed theoretical analysis of the polariza-
tions that contribute to different types of MQ-MAS experiments
is provided. In particular, two polarization pathways are distin-
guished for the creation of triple-quantum coherence. The existence
of these pathways is experimentally demonstrated by comparing the
sensitivities of different sequences with and without RAPT prepa-
ration. C© 2001 Academic Press
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1. INTRODUCTION

Solid-state NMR of quadrupolar nuclei has undergone a
naissance in the past decade starting with techniques such a
ble rotation (DOR) (1) and dynamic angle spinning (DAS) (2–4)
which provided high-resolution isotropic spectra of quadrupo
nuclei for the first time, followed by the subsequent introduct
of the transition correlated magic-angle spinning experime
multiple-quantum MAS (MQ-MAS) (5, 6) and satellite tran-
sition MAS (ST-MAS) (7). From a mechanical point of view
the transition correlated magic-angle spinning experiments
easier techniques to implement experimentally as they ca
performed with most commercial MAS probes and have gai
the most widespread use. While all these techniques are
come additions to the solid-state NMR spectroscopist’s toolb
the inherently low sensitivity of many quadrupolar nuclei s
remains an obstacle to their full exploitation.

Although it was understood quite early in the history of NM
that the polarization of the central transition of quadrupolar
clei can be enhanced by transferring polarization from the sa
lite transitions (8), attention was only focused on this possibil
when Haase and Conradi (9) developed a technique for selectiv
inversion of the outer satellite transitions using frequency sw
adiabatic passages to enhance the central transition by a fac
2I in static samples. Kentgens and Verhagen (10) later employed
1 To whom correspondence should be addressed. E-mail: grandinetti
osu.edu.

ica-
n-

71
re-
dou-

lar
on
ts:

are
be

ed
el-

ox,
ill

R
u-
tel-
y
e
ept
or of

.1@

amplitude-modulated double-frequency adiabatic sweeps to
hance the central transition polarization in samples under b
static and MAS conditions. More recently, we devised a sim
technique called RAPT (rotor assisted population transfer) (11)
where a fast 180◦ phase alternating pulse train during mag
angle spinning is used to prepare a selectively excited sta
which the populations of all eigenstates|m〉with the same sign of
m are equal, resulting in an enhanced centralm= −1/2→ 1/2
transition polarization. In general, a theoretical maximum
hancement factor ofI + 1/2 can be obtained with this selectiv
“saturation” of the satellite transitions. Although polarizatio
enhancement by selective saturation of the satellite transit
does not provide as much of an enhancement as selective i
sion, nevertheless it has the important advantage over sele
inversion that it can be performed under sample rotation
obtained for all crystallite orientations simultaneously.

Such enhancement schemes can be easily combined
high-resolution solid-state techniques such as DOR and D
since these techniques draw their coherences from the pola
tion of the central transition. In contrast, understanding the ef
of these schemes in combination with MQ-MAS experime
requires an understanding of the polarization source for co
ences in MQ-MAS, which will in turn depend on the particul
pulse scheme used to prepare the multiple-quantum cohere
For example, in both the traditional high-power single-pu
(6, 12–14) scheme and the more recent low-power rotary r
onance (FASTER) single-pulse (15) preparation method, the
resulting triple-quantum coherence comes mainly from the e
librium polarization associated with them = ±3/2 states. In
contrast, in the rotationally induced adiabatic coherence tran
(RIACT (II)) scheme (16) the triple-quantum coherence com
from the equilibrium polarization associated with them= ±1/2
states. Thus, it should be straightforward to apply schemes
RAPT to enhance the sensitivity of RIACT(II) experiments, b
RAPT should actually reduce the sensitivity of MQ-MAS s
quences that draw their coherences from the equilibrium po
ization associated with them= ±3/2 states.

In this paper we experimentally demonstrate that the appl
tion of RAPT before RIACT(II) does indeed improve the se
sitivity of the RIACT(II) experiment by a factor of 2 in the
1090-7807/01 $35.00
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spin-3/2 system. In addition, we also apply RAPT before a c
ventional MQ-MAS sequence and demonstrate that the se
tivity is reduced as predicted.

2. EXPERIMENTAL

All NMR spectra were acquired at 9.4 T (130.93697 MH
87Rb frequency) with a Bruker DMX 400 spectrometer, usin
Bruker 4-mm MAS probehead, capable of achieving a radio
quency nutation rate (ν1) of 175 kHz. A bandpass filter was use
in between the probe and the ADC to reduce the reflecting v
age from the probe caused by the high-power RAPT pulse t
The solid-state87Rb resonance of RbCl was used to calibrate
radiofrequency field strength and also as the external frequ
reference (δRbCl = 0). The sample used to demonstrate the uti
of the new experiments was polycrystalline RbClO4, which has
87Rb quadrupolar coupling parameters (17) of Cq = 3.2 MHz
andηq = 0.21. The shifted-echo hypercomplex method (18)
was used in acquiring and processing all two-dimensional d
The effectiveT1 of the 87Rb central transition in RbClO4 was
measured to be 145 ms using a saturation recovery experim
All experiments were performed using a 1-s recycle delay a
spinning speed of 12 kHz. The 200-ns delay between each p
in the X-X̄ pulse train of RAPT was used to allow time for th
transmitter phase to stabilize. TheX-X̄ pulse lengths were equa
and were optimized experimentally. The inverse of the total t
to complete oneX-X̄ interval (including the 200-ns delays)
defined as the RAPT modulation frequency,νm.

3. THEORY

To demonstrate how the mechanisms for triple-quan
preparation differ between single-pulse preparation and
ACT(II), we now look at these two mechanisms from a mo
theoretical perspective. In general, we will consider two po
ble polarization sources for the triple-quantum coherence,
polarization associated with them = ±3/2 states and the po
larization associated with them= ±1/2 states. In other words
starting with a density operator ofρ = I z = 3I1−4

z + I2−3
z ,

and using the single transition operator notation (19, 20), we
consider two polarization sources for generating triple-quan
coherence,

3I1−4
z

R1−4
x−→ 3I1−4

y .

I2−3
z

R2−3
x−→ I1−4

y .

Because the first rotation utilizes the greater equilibrium
larization of the 1– 4 transition, we call it the “greater pat
to distinguish it from the second that converts the lesser e
librium polarization of the 2–3 transition intoI1−4. While the
y
greater path has the potential to provide three times the trip
quantum coherence of the lesser path, it should be noted
T AL.
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the relaxation time needed for the 1–4 transition to return to
equilibrium value may be different than that for the 2–3 tran
tion.

In the discussion that follows we will consider evolution und
a Hamiltonian containing the first-order quadrupolar and
radiofrequency interactions:

H̃/h– = ωq A2,0(3q)T2,0− ω1I x,

where A2,0(3q) is an element of an irreducible spherical te
sor which in its principal axis system (PAS) has the valu
ρ2,0 = 1/

√
6 andρ2,±2 = ρ2,0 ·ηq/

√
6. Hereηq is the quadrupo-

lar coupling asymmetry parameter, and3q are the Euler an-
gles (α, β, γ ) between the lab frame and the PAS frame. T
quadrupolar coupling constant is given byCq = e2q Q/h (or
e2q Q/(4πε0h) in SI units) and the quadrupolar splitting b
ωq = 6πCq/2I (2I − 1).

3.1. Single-Pulse Triple-Quantum Preparation

On the basis of earlier work on multiple quantum exci
tion in solids (19, 20) it was first assumed in MQMAS article
(6, 12) that triple-quantum coherence would be created at a
proportional toω3

1/ω
2
Q and come from the polarization assoc

ated with the 1–4 transition. This assumption was based
perturbation expansion of the eigenstates and eigenvalues
limit that |ω1| ¿ |WQ(3q)| leading to the approximate rotatin
frame Hamiltonian for a spinI = 3/2 system of

H̃/h– ≈ g−WQ(3q)
(
I1−2

z − I3−4
z

)
− (1− g+)ω1I1−4

x − (1+ g+)ω1I2−3
x , [1]

whereWQ(3q) = √6ωq A2,0(3q) andg± is written in a series
expansion in the low RF limit as

g− = 1+ 3

2

ω2
1

W2
Q

+ 3

8

ω4
1

W4
Q

− 57

16

ω6
1

W6
Q

+ 867

128

ω8
1

W8
Q

+ · · · ,

g+ = 1− 3

2

ω2
1

W2
Q

+ 15

8

ω4
1

W4
Q

+ 21

16

ω6
1

W6
Q

− 1893

128

ω8
1

W8
Q

+ · · · .

The presence ofI1−4
x in this approximate Hamiltonian clearl

shows that triple-quantum coherence can be created by takin
“greater path,” that is,I1−4

z of our equilibrium density operato
into I1−4

y at a nutation frequency of (1− g+)ω1, that is,

Tr
{
e−(i /h–)H̃t I ze

(i /h–)H̃t I1−4
y

} = 3

2
sin[(1− g+)ω1t ].

In this approximation a zeroth-order expansion of the eigenv
le-
that
without restricting its eigenvalues to obtain the effective rotating
frame Hamiltonian (see Appendix A.1).
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ENHANCED SENSITIVITY IN RIACT/M

Subsequent numerical studies (21), however, showed tha
in the short pulse limit the triple-quantum oscillations in a po
crystalline sample occurred at a faster rate that is proporti
to ω1 and notω3

1/ω
2
Q. Clearly, a different subset of crysta

lite orientations than those with|ω1| ¿ |WQ(3q)| was con-
tributing more significantly to the total triple-quantum coh
ence created by a single pulse. Although theω3

1/ω
2
Q assumption

is not valid, it does not follow that the polarization source
the triple-quantum coherence is not them=±3/2 states. Thus
in order to determine the major polarization source for trip
quantum coherence generated by a single pulse in a poly
talline sample we have performed numerical simulations a
function of quadrupole coupling constant with a constant
field strength ofω1/2π = 100 kHz and sample spinning spe
of ωR/2π = 10 kHz starting with three different initial densit
operators ofρ(0) = I2−3

z , ρ(0) = 3I1−4
z , andρ(0) = I z. These

results are shown in Fig. 1 for three cases having quadrup

FIG. 1. Creation of triple-quantum coherence starting from the three dif
ent initial density matrices,ρ(0)= I2−3

z (solid black line),ρ(0)= 3I1−4
z (solid

black line), andρ(0)= I z (solid gray line) as a function of pulse duration wi
ηq = 0 and a constant RF field strength ofω1/2π = 100 kHz and spinning
speed ofωR/2π = 10 kHz. In (A) Cq = 2.5 MHz, (B) Cq = 1.5 MHz, and
(C) Cq = 0.5 MHz. All simulations were based on a full numerical dens
matrix calculation and were averaged over 3722 crystallite orientations.

continuous motion of the rotor was approximated by discretizing each rotor
riod into 512 smaller time-independent periods, according to standard meth
(22).
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coupling constants ofCq = 0.5, 1.5, and 2.5 MHz. In all plots
the triple-quantum coherence created from an initial density
erator ofρ(0)= I z is shown as a thick gray line, and the triple
quantum coherence created fromρ(0)= I2−3

z andρ(0)= 3I1−4
z

is shown as black lines.
In general, the evolution of the triple-quantum coherence g

erated fromρ(0) = I z more closely follows theρ(0) = 3I1−4
z

curve, except at very short pulse lengths where it more clos
follows the ρ(0) = I2−3

z curve. Clearly, the most signifi-
cant triple-quantum intensity is generated at the longer pu
lengths where the majority of the coherence is drawn fr
the equilibrium polarization associated with them = ±3/2
states. Thus, assuming that the majority of MQ-MAS expe
ments would be performed under such optimized conditio
we conclude that the single-pulse triple-quantum preparatio
MQ-MAS generally follows the greater path of triple-quantu
excitation.

3.2. RIACT Triple-Quantum Preparation

While the ideas in the previous section were based on ea
theories of multiple-quantum dynamics in static samples,
ideas employed in RIACT (16) for triple-quantum excitation are
based on the theory of spin locking of quadrupolar nuclei un
magic-angle spinning as first described by Vega (23). In this
section we present a brief overview of this theory as descri
by Baltisbergeret al. (24).

In the case of RF excitation in a rotating sample where
pulse length is not short compared to the rotor period, we tra
form into the time-dependent diagonal frame and write the pr
agator in the rotating frame as

U(t, 0)= V(t) · T · e− i
h–
∫ t

0 [D(s) + ih–V̇†(s)V(s)] ds · V†(0),

whereT is the Dyson time ordering operator andV(t) is the
transformation that diagonalizes the Hamiltonian at timet ac-
cording to

D(t) = V†(t)H(t)V(t).

When‖D(t)‖ À ‖i V̇†(t)V(t)‖ we can apply the adiabatic ap
proximation (in our specific case, there are no diagonal com
nents ini V̇†(t)V(t), thus we can neglect this contribution in th
adiabatic approximation) and write our propagator as

U(a)(t, 0)= V(t) · e− i
h–
∫ t

0 D(s)ds · V†(0). [2]

Conversely, when‖i V̇†(t)V(t)‖ À ‖D(t)‖ we can apply the
sudden approximation and write our propagator as

U(s)(t, 0)= V(t) · e
∫ t

0 V̇†(s)V(s)ds · V†(0). [3]

pe-
ods
In the case of RF excitation of a second-order broadened
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FIG. 2. Plots of 2ξ1−3(t) and 2ξ2−4 t as a function of the rotor phas
for a crystallite spinning about the magic angle (54.74◦) with PAS oriented
perpendicular to the rotor, usingCq = 2.5 MHz, ηq = 0.0.

quadrupolar nucleus under currently available sample spin
speeds, we will find that at any given instant nuclei in nea
all crystallite orientations can be described using the adiab
approximation, and it is only whenWQ(3(t)) passes throug
zero that we will we need to consider other possibilities.

In the case of a spinI = 3/2 system experiencing the firs
order quadrupolar and RF interactions, we can use the
act analytical diagonalization (25, 19) and obtain (see th
Appendix)

D(t) = ω1

2
(E1−3− E2−4)− ω1−3I1−3

z − ω2−4I2−4
z [4]

and

i V̇†(t)V(t) = 2ξ̇2−4(t)I2−4
y + 2ξ̇1−3(t)I1−3

y . [5]

Fig. 2 shows a plot of the values of 2ξ1−3 and 2ξ2−4, the angles
in the 1–3 and 2–4 subspaces, respectively, needed to diag
ize the Hamiltonian, as a function of the rotor phase for th
crystallites that undergo the largest excursion ofWQ(3q(t)) dur-
ing this period. Note that for a majority of the period 2ξ1−3 and
2ξ2−4 have values near either 0 orπ .

The size ofi V̇†(t)V(t) is related to the rate of change of t
eigenstates and has the form of Lorenztian impulse function
follows:

2ξ̇1−3(t) =
√

3ω1ωQ

[ω1− ωQ A2,0(t)]2+ 3ω2
1

· d A2,0(t)

dt

and

2ξ̇2−4(t) =
√

3ω1ωQ

[ω1+ ωQ A2,0(t)]2+ 3ω2
1

· d A2,0(t)

dt
.

˙1−3 ˙2−4
Plots of 2ξ (t) and 2ξ (t) as a function of rotor period
are shown in Fig. 3. Notice that thei V̇†(t)V(t) terms are only
nonnegligible near the zero crossings ofWQ(3(t)). To indicate
T AL.
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whether a zero crossing is in the adiabatic intermediate, or
den regime, an adiabaticity parameter (24) is defined as

α = − ω
1−3(tzero)

2ξ̇1−3(tzero)
= ω2−4(tzero)

2ξ̇2−4(tzero)
= a(3′q, t) ·

ω2
1

ωQωR
,

where

1√
2a(3′q, t)

= 1

ωR

d A2,0(t)

dt

= −i
∑
k′ 6=0

k′e−ik ′(ωRt+α)d(2)
k′,0(βR) A2,k′ (3

′
q).

This definition of the adiabaticity parameter is similar to
one used by Vega (23); however, now there is an addition
orientation dependence which comes from the time deriva
of A20(t). When the value ofα is much larger than, much les
than, or on the order of 1, the zero crossing will be adiaba
sudden, or intermediate, respectively.

While the sudden approximation does not hold for all tim
the terms 2̇ξ1−3(t), and 2̇ξ2−4(t) have the form of an impuls
function with an integrated area ofπ centered near the zer
crossing ofWQ(3(t)). This can result in a rapid transition b
tween the adiabatic propagator of Eq. [2] and the sudden p
agator of Eq. [3].

FIG. 3. Plots of diagonal and off-diagonal coefficientsω1−3, ω2−4,

2ξ̇1−3(t), and 2̇ξ2−4(t) of the time-dependent effective Hamiltonian in Eq
[4] and [5], as a function of the rotor phase for a crystallite spinning
ωR/2π = 12.5 kHz about the magic angle (54.74◦) with PAS oriented per-
pendicular to the rotor andCq = 2.5 MHz, ηq = 0.0. In (A) an RF field
strength ofω1/2π = 200 kHz is used and the adiabatic approximation ho

at the zero crossing of the quadrupolar splitting. In (B) an RF field strength
of ω1/2π = 50 kHz is used and the sudden approximation holds at the zero
crossing of the quadrupolar splitting.
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ENHANCED SENSITIVITY IN RIACT/M

Crystallites which pass through the zero crossing in neit
an adiabatic nor a sudden regime fall into the intermed
regime. This type of evolution is the most difficult to calcula
analytically. To determine the evolution of the density mat
in the interemediate regime, contributions from bothD(t) and
V̇†(t)V(t), which do not commute at all times, must be used
construct the propagator. Vega (23) has shown with numerica
simulations that spins undergoing an intermediate regime z
crossing evolve into non-spin-locked states and thus result
significant loss of CP intensity.

3.2.1. RIACT—Adiabatic passage.Using this theoretical
framework we now examine the RIACT mechanism (16) for
transferring coherence between the triple-quantum and sin
quantum central transition states. In the adiabatic approxima
we can ignore the termi V̇†(t)V(t) at all times and therefore us
Eq. [2]. Vega (23) showed that the coherencesI1−4

x and I2−3
x

will interconvert with every zero crossing ofWQ(3(t)) under
an RF spin lock in the adiabatic limit. This can be seen us
the equation above and propagatingI2−3

x under the adiabatic
propagator with the RF pulse alongx to obtain

ρ(t) = U(a)
x (t, 0) · I2−3

x · U(a)†
x (t, 0)

= Vx(t) · exp

{
− i

h–

∫ t

0
D(s) ds

}
· V†x(0) · I2−3

x · Vx(0) · exp

{
i

h–

∫ t

0
D(s) ds

}
· V†x(t).

If we start (arbitrarily) the spin lock at a point where 2ξ1 ≈
2ξ2 ≈ 0 (i.e., |WQ(3q)| À |ω1| andWQ(3q) > 0), then the
innermost sandwich in our propagator yields

V†x(2ξ1 ≈ 2ξ2 ≈ 0) · I2−3
x · Vx(ξ1 ≈ ξ2 ≈ 0)= I2−3

z

Since I2−3
z commutes with the Hamiltonian in the diago

nal frame we have no evolution ofI2−3
z due to UD(t, 0) =

exp{−(i /h–)
∫ t

0 D(s) ds}. If we turn off the RF spin lock pulse
after WQ(3q) changes sign due to the rotor motion, then t
transformation out of the time-dependent diagonal frame occ
with 2ξ1 ≈ 2ξ2 ≈ π (i.e., |WQ(3q)| À |ω1| andWQ(3q) < 0)
and we have

ρ(t) = Vx(2ξ1 ≈ 2ξ2 ≈ π ) · I2−3
z · V†x(2ξ1 ≈ 2ξ2 ≈ π ) = I1−4

x .

Thus we see that with every zero crossing inWQ(3(t)) the cen-
tral transitionI2−3

x coherence is converted into triple-quantu
I1−4

x . Similarly, one can also show that with every zero cross
I1−4

x is converted intoI2−3
x , that is,
I2−3
x

U(a)
x (t,0)←−−→ I1−4

x .
Q-MAS EXPERIMENTS USING RAPT 75
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Of course, the same behavior is observed if we apply our
lock on coherences along they axis, that is,

I2−3
y

U(a)
y (t,0)←−−→ I1−4

y .

In contrast, all coherences or populations orthogonal to the
spin lock direction will evolve and will thus lead to rapid d
phasing in a polycrystalline or amorphous sample.

This mechanism for interconversion between triple-quan
and central transition coherence with each zero crossing oWQ

not only forms the basis of RIACT for MQ-MAS preparatio
and excitation but also plays an important role during cro
polarization experiments in MAS (26), DAS (24), and MQ-MAS
(27–30).

3.3. The RAPT Effect

Finally, we note that the effect of the RAPT sequence i
prepare the initial density operator in a state that enhance
polarization of the central (m= ±1/2) transition at the expens
of triple-quantum (m= ±3/2) polarization,

ρ = 3I1−4
z + I2−3

z
RAPT−→ 2I1−4

z + 2I2−3
z ,

the impact of this rearrangement being that the sensitivit
experiments like RIACT which draw their triple-quantum c
herence from the central transition will be enhanced by a fa
of 2, while those like the conventional single-pulse MQ-MA
experiment will be diminished by a factor of 2/3.

4. RESULTS AND DISCUSSION

In light of the above discussion we investigated the effect
RAPT preparation sequence optimized for the central trans
of 87Rb in RbClO4 on the sensitivity of the RIACT(II) MQ-
MAS experiment, as well as on the conventional single-pu
excitation and mixing MQ-MAS experiment.

Using the RAPT enhanced RIACT(II) sequence, which w
constructed by simply placing the RAPT preparation seque
(11) in front of the RIACT(II) sequence (16) as shown in Fig. 4A
an experimental enhancement factor of 1.8 was obtained.
spectrum of Fig. 4A was obtained with an RF field strength
170 kHz, a modulation frequency (νm) of 695 kHz, and a RAPT
pulse train duration of 90.7µs, which is close to one rotor perio
τr = 83.3µs. The length of the selective central transition ex
tation pulse was 0.75µs, and the spin-lock pulse was 20.83µs,
which is τr /4, as specified by Wuet al. (16). The intervalτ
between the RAPT preparation was increased to approxim
0.4 ms to act as az-filter, eliminating all transverse coherenc
and the need to modify the RIACT(II) phase cycle.
The experimental enhancement factor of 1.8 is very close
to the theoretical value ofI + 1/2 = 2, showing the good
agreement with theory. Moreover, it is particularly important to
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notice that the anisotropic MQ-MAS lineshape observed us
the RAPT enhancement is undistorted with respect to the c
ventional RIACT(II) experiment, indicating that all crystallite
in the sample are affected in the same way by the RAPT pre
ration. The anisotropic cross sections are shown in Fig. 4B
the RIACT(II) experiment with RAPT preparation (shown
a solid line) and without RIACT(II) preparation (shown as
dashed line). The lack of distortion in the enhanced lineshap
one of the key advantages of this method.

To ensure that our theoretical understanding outlined in
previous section is correct, the effect of the RAPT prepara
on the conventional MQ-MAS experiment was also investiga
by placing the RAPT pulse train before the conventional M
MAS pulse sequence, as shown in Fig. 5A. For this experim
the RF field strength used for the RAPT preparation and
conventional MQ-MAS sequence sequence was 170 kHz.
experimentally optimized excitation pulse length was 6µs, and
the conversion pulse length was 5.5µs.

In this case we see from the anisotropic lineshapes of Fig
an experimental reduction in signal using the RAPT prepa
tion by a factor of 0.6, which is in close agreement with t
factor of 2/3 predicted by theory in the previous section. Thu
these experimental demonstrations tend to strongly suppor

FIG. 4. (A) RIACT(II) pulse sequence with RAPT preparation. (B)
comparison of the anisotropic projections from theω2 dimension of the87Rb
RIACT(II) experiment in polycrystalline RbClO4 with (solid line) and without
(dashed line) the RAPT preparation. A total of 64t1 points with 15-µs incre-
ments were acquired withτ set to 20 rotor periods and the spinning rate

12 kHz. The spectrum was zero filled once in thet2 andt1 domains. A factor of
1.8 sensitivity enhancement was achieved by applying RAPT preparation bef
RIACT(II).
AL.
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urFIG. 5. (A) MQ-MAS pulse sequence with RAPT preparation. (B) A co

parison of the anisotropic projections from theω2 dimension of the87Rb
MQ-MAS experiment in polycrystalline RbClO4 with (solid line) and with-
out (dashed line) the RAPT preparation. A total of 64t1 points with 15-µs
increments were acquired withτ set to 20 rotor periods and the spinning rate
12 kHz. The spectrum was zero filled once in thet2 andt1 domains. In this ex-
ample the experimental sensitivity is diminished by a factor of 0.6 in MQ-M
using the RAPT preparation.

theoretical interpretation of the mechanisms of these exp
ments in terms of the greater and lesser paths.

5. CONCLUSION

We have provided a detailed analysis of the polarizati
that contribute to different types of MQ-MAS experimen
We distinguish two preparation pathways to create trip
quantum coherence, the first from outer transition polariza
and the second from inner transition polarization. These p
ways are dubbed the greater and lesser paths, respectivel
find that “conventional” single-pulse preparation MQ-MAS s
quences principally benefit from the greater path, while
quences of the RIACT type utilize predominantly the les
path.

In light of this discussion we have proposed the comb
tion of the RAPT preparation sequence with RIACT(II) and
achieve an experimental factor of 1.8 sensitivity enhancem
without significant changes in the RIACT(II) anisotropic lin
shape.
ore

In contrast we also demonstrate that, as predicted, the applica-
tion of the RAPT pulse train in front of conventional MQ-MAS
leads to a factor of 0.6 sensitivity reduction.
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APPENDIX

A.1. Diaginalization of the I = 3/2 Rotating Frame
Hamiltonian During RF Irradiation

In this Appendix we examine the diagonalization of the
tating frame Hamiltonian for a quadrupolar coupledI = 3/2
during RF irradiation. Our starting Hamiltonian is

H̃/h– = ωq A2,0(3q)T2,0− ω1I x.

For I = 3/2, this Hamiltonian can be written in terms
fictitious spin half operators (19, 20, 31)

H/h– = WQ(3q)
(
I1−2

z −I3−4
z

)−√3ω1
(
I1−2

x + I3−4
x

)− 2ω1I2−3
x ,

where WQ(3q) = √6ωq A2,0(3q). This Hamiltonian can be
diagonalized (19, 25) using the transformation

V(2ξ1−3, 2ξ2−4) = ei π2 I1−4
y e−i π2 I2−3

y e2i ξ1−3I1−3
y e2i ξ2−4I2−4

y ,

with

tan(2ξ1−3) = −√3ω1

WQ(3q)− ω1
,

[A.1]

tan(2ξ2−4) = −√3ω1

WQ(3q)+ ω1
.

In this diagonal frame we have

D = V†HV = 1

2
f−WQ(3q)(E1−4− E2−3)

+ ω1
[
(1− f+)I1−4

z − (1+ f+)I2−3
z

]
,

where

f− = ω2−4(ω1)− ω1−3(ω1)

2WQ(3q)

f+ = ω2−4(ω1)+ ω1−3(ω1)

2ω1

or, written in terms of double-quantum operators,

D = 1

2
ω1(E1−3− E2−4)− ω1−3I1−3

z − ω2−4I2−4
z ,

where

ω1−3 = −
√

3ω2
1 + (WQ(3q)− ω1)2

= −( f−WQ(3q)− f+ω1),
ω2−4 =
√

3ω2
1 + (WQ(3q)+ ω1)2 = f−WQ(3q)+ f+ω1.
Q-MAS EXPERIMENTS USING RAPT 77

o-

f

A.1.1. Perturbation Expansion in the Lowω1 Limit

The analytical solution given above can be used to ob
a series expansion about the low RF power limit (i.e., ab
ω1 = 0) for the eigenvectors to obtain

cos 2ξ1−3(ω1) = WQ(3q)√
WQ(3q)2

[
1+ 0− 3

2

ω2
1

WQ(3q)2

− 3ω3
1

WQ(3q)3
− 9

8

ω4
1

WQ(3q)4

+ 15

2

ω5
1

WQ(3q)5
+ · · ·

]
,

sin 2ξ1−3(ω1) = WQ(3q)√
WQ(3q)2

[
0−

√
3ω1

WQ(3q)
−
√

3ω2
1

WQ(3q)2

+
√

3

2

ω3
1

WQ(3q)3
+ 7
√

3

2

ω4
1

WQ(3q)4

+ 37
√

3

8

ω5
1

WQ(3q)5
+ · · ·

]
,

and

cos 2ξ2−4(ω1) = WQ(3q)√
WQ(3q)2

[
1+ 0− 3

2

ω2
1

WQ(3q)2

+ 3ω3
1

WQ(3q)3
− 9

8

ω4
1

WQ(3q)4

− 15

2

ω5
1

WQ(3q)5
+ · · ·

]
,

sin 2ξ2−4(ω1) = WQ(3q)√
WQ(3q)2

[
0−

√
3ω1

WQ(3q)
+
√

3ω2
1

WQ(3q)2

+
√

3

2

ω3
1

WQ(3q)3
− 7
√

3

2

ω4
1

WQ(3q)4

+ 37
√

3

8

ω5
1

WQ(3q)5
+ · · ·

]
.

and for the the eigenvalues we obtain

f± = WQ√
W2

Q

g±,

where

g− = 1+ 3

2

ω2
1

W2
Q

+ 3

8

ω4
1

W4
Q

− 57

16

ω6
1

W6
Q

+ 867

128

ω8
1

W8
Q

+ · · ·
g+ = 1− 3

2

ω2
1

W2
Q

+ 15

8

ω4
1

W4
Q

+ 21

16

ω6
1

W6
Q

− 1893

128

ω8
1

W8
Q

+ · · ·
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An important simplification afforded by these expansions
that coherence transfer efficiency during a pulse is determi
entirely by the eigenvectors, while the nutation frequency
determined entirely by the eigenvalues. Therefore, we are
required to use expansions of equal order for both the eig
values, f±, and the eigenvectors, 2ξ1−3 and 2ξ2−4, in order to
obtain accurate predictions for the transfer efficiency and nu
tion frequency during the preparation and mixing periods.

To first order the angles 2ξ1−3 and 2ξ2−4 are equal, and to ze
roth order they are equal to either zero orπ depending on the sign
of WQ. WhenWQ> 0 we transform our diagonal Hamiltonia
back to the rotating frame using 2ξ1−3 = 2ξ2−4 = 0, and when
WQ< 0 we transform our diagonal Hamiltonian back to the r
tating frame using 2ξ1−3 = 2ξ2−4 = π . In both cases the fina
result is

H ≈ g−WQ
(
I1−2

z − I3−4
z

)− (1− g+)ω1I1−4
x − (1+ g+)ω1I2−3

x .

A.2. Operator Transformations Between Rotating
and Diagonal Frame

A.2.1. Transformations from the Rotating Frame into the
Diagonal Frame for the Spin I= 3/2 Case

V†I1−4
± V = 1

2
(I1−4
± − I1−4

∓ ) cosξ2−4 cosξ1−3

+ 1

2
(I2−3
± − I2−3

∓ ) sinξ2−4 sinξ1−3

− 1

2
(I1−2
± − I1−2

∓ ) sinξ2−4 cosξ1−3

+ 1

2
(I3−4
± − I3−4

∓ ) cosξ2−4 sinξ1−3

− 1

2
I2−4

x sin 2ξ2−4− 1

2
I1−3

x sin 2ξ1−3

− I1−4
z cos2 ξ1−3 cos2 ξ2−4

+ I2−3
z sin2 ξ1−3 sin2 ξ2−4

− I1−2
z cos2 ξ1−3 sin2 ξ2−4

− I3−4
z sin2 ξ1−3 cos2 ξ2−4

V†I2−3
± V = 1

2
(I1−4
± − I1−4

∓ ) sinξ2−4 sinξ1−3

+ 1

2
(I2−3
± − I2−3

∓ ) cosξ2−4 cosξ1−3

+ 1

2
(I1−2
± − I1−2

∓ ) cosξ2−4 sinξ1−3

− 1
(I3−4
± − I3−4

∓ ) sinξ2−4 cosξ1−3
2

+ 1

2
I2−4

x sin 2ξ2−4
AL.
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+ 1

2
I1−3

x sin 2ξ1−3+ I2−3
z cos2 ξ1−3 cos2 ξ2−4

− I1−4
z sin2 ξ1−3 sin2 ξ2−4

− I1−2
z sin2 ξ1−3 cos2 ξ2−4

− I3−4
z cos2 ξ1−3 sin2 ξ2−4

V†I2−3
z V = −1

2
(I2−3
+ + I2−3

− ) cosξ2−4 cosξ1−3

+ 1

2
(I1−4
+ + I1−4

− ) sinξ2−4 sinξ1−3

+ 1

2
(I1−2
+ + I1−2

− ) cosξ2−4 sinξ1−3

− 1

2
(I3−4
+ + I3−4

− ) sinξ2−4 cosξ1−3

V†I1−4
z V = −1

2
(I1−4
+ + I1−4

− ) cosξ2−4 cosξ1−3

− 1

2
(I2−3
+ + I2−3

− ) sinξ2−4 sinξ1−3

− 1

2
(I1−2
+ + I1−2

− ) cosξ2−4 sinξ1−3

+ 1

2
(I3−4
+ + I3−4

− ) sinξ2−4 cosξ1−3

.2.2. Transformations from the Diagonal Frame into the
Rotating Frame for the Spin I= 3/2 Case

I 2−3
+ V†

= 1

2
(I2−3
+ − I2−3

− ) cosξ1−3 cosξ2−4− I2−3
z cosξ1−3 cosξ2−4

+ 1

2
(I1−4
+ − I1−4

− ) sinξ1−3 sinξ2−4− I1−4
z sinξ1−3 sinξ2−4

+ 1

2
(I1−2
+ cosξ1−3 sinξ2−4+ I1−2

− sinξ1−3 cosξ2−4)

− 1

2
(I3−4
+ + sinξ1−3 cosξ2−4+ I3−4

− cosξ1−3 sinξ2−4)

− 1

2
(I2−4
+ sinξ1−3 cosξ2−4− I2−4

− cosξ1−3 sinξ2−4)

− 1

2
(I1−3
+ cosξ1−3 sinξ2−4− I1−3

− sinξ1−3 cosξ2−4)

VI 2−3
− V† = −1

2
(I2−3
+ − I2−3

− ) cosξ1−3 cosξ2−4

− I2−3
z cosξ1−3 cosξ2−4

− 1
(I1−4
+ − I1−4

− ) sinξ1−3 sinξ2−4
2

− I1−4
z sinξ1−3 sinξ2−4+ 1

2
(I1−2
+ sinξ1−3 cosξ2−4
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+ I1−2
− cosξ1−3 sinξ2−4)− 1

2
(I3−4
+ cosξ1−3 sinξ2−4

+ I3−4
− sinξ1−3 cosξ2−4)+ 1

2
(I2−4
+ cosξ1−3 sinξ2−4

− I2−4
− sinξ1−3 cosξ2−4)+ 1

2
(I1−3
+ sinξ1−3 cosξ2−4

− I1−3
− cosξ1−3 sinξ2−4)

VI 2−3
z V†

= 1

4
(I2−3
+ + I2−3

− )(cos2 ξ1−3+ cos2 ξ2−4)

+ 1

2
E2−3(cos2 ξ2−4− cos2 ξ1−3)

+ 1

4
(I1−4
+ + I1−4

− )(sin2 ξ1−3+ sin2 ξ2−4)

+E1−4(sin2 ξ2−4− sin2 ξ1−3)

+ 1

4
(I1−2
+ + I1−2

− )(cosξ1−3 sinξ1−3− cosξ2−4 sinξ2−4)

+ 1

4
(I3−4
+ + I3−4

− )(cosξ1−3 sinξ1−3− cosξ2−4 sinξ2−4)

− 1

4
(I2−4
+ + I2−4

− )(cosξ1−3 sinξ1−3+ cosξ2−4 sinξ2−4)

− 1

4
(I1−3
+ + I1−3

− )(cosξ1−3 sinξ1−3+ cosξ2−4 sinξ2−4)

VI 1−4
+ V†

= 1

2
(I1−4
+ − I1−4

− ) cosξ1−3 cosξ2−4

+ I1−4
z cosξ1−3 cosξ2−4

+ 1

2
(I2−3
+ − I2−3

− ) sinξ1−3 sinξ2−4+ I2−3
z sinξ1−3 sinξ2−4

+ 1

2
(I1−2
+ cosξ1−3 sinξ2−4+ I1−2

− sinξ1−3 cosξ2−4)

− 1

2
(I3−4
+ sinξ1−3 cosξ2−4+ I3−4

+ cosξ1−3 sinξ2−4)

+1

2
(I2−4
+ sinξ1−3 cosξ2−4− I2−4

− cosξ1−3 sinξ2−4)

+ 1

2
(I1−3
+ cosξ1−3 sinξ2−4− I1−3

− sinξ1−3 cosξ2−4)

VI 1−4
− V†

= −1
(I1−4
+ − I1−4

− ) cosξ1−3 cosξ2−4
2

+ I1−4
z cosξ1−3 cosξ2−4− 1

2
(I2−3
+
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− I2−3
− ) sinξ1−3 sinξ2−4+ I2−3

z sinξ1−3 sinξ2−4

+ 1

2
(I1−2
+ sinξ1−3 cosξ2−4+ I1−2

− cosξ1−3 sinξ2−4)

− 1

2
(I3−4
+ cosξ1−3 sinξ2−4+ I3−4

+ sinξ1−3 cosξ2−4)

− 1

2
(I2−4
+ cosξ1−3 sinξ2−4− I2−4

− sinξ1−3 cosξ2−4)

− 1

2
(I1−3
+ sinξ1−3 cosξ2−4− I1−3

− cosξ1−3 sinξ2−4)

VI 1−4
z V†

= − 1

4
(I1−4
+ + I1−4

− )(cos2 ξ1−3+ cos2 ξ2−4)

− 1

2
E1−4(cos2 ξ2−4− cos2 ξ1−3)

− 1

4
(I2−3
+ + I2−3

− )(sin2 ξ1−3+ sin2 ξ2−4)

−E2−3(sin2 ξ2−4− sin2 ξ1−3)

+ 1

4
(I1−2
+ + I1−2

− )(cosξ1−3 sinξ1−3− cosξ2−4 sinξ2−4)

+ 1

4
(I3−4
+ + I3−4

− )(cosξ1−3 sinξ1−3− cosξ2−4 sinξ2−4)

− 1

4
(I2−4
+ + I2−4

− )(cosξ1−3 sinξ1−3+ cosξ2−4 sinξ2−4)

− 1

4
(I1−3
+ + I1−3

− )(cosξ1−3 sinξ1−3+ cosξ2−4 sinξ2−4)
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